您所在的位置:軍轉干考試網 > 備考資料 > 行測 > 數量關系 > 數學運算 >
2021-09-13 14:10:34來源:中公軍轉網閱讀次數:
【導語】數量關系是行政職業能力測驗的重要組成部分,為了幫助領導熟悉行測復習內容,行測試題、行測數量關系、圖形推理、言語理解、資料分析等知識點解析,中公軍轉網整理提供:2021軍轉干行測技巧:工程合作有難度 特值巧解來幫助。(歡迎大家Ctrl+D 收藏關注頁面)
你是否看到數量就頭疼?
你是否一做數量就迷茫?
你是否常常產生放棄數量的想法?
中公教育提醒您,這大概是對數量不太了解惹的禍哦!數量關系雖然涉及的知識點比較分散,甚至有一些難題,但是,并不是數量關系所有考點都很難,工程問題是數量關系中經常出現的又容易得分的一類題型,也是數量關系專項中我們得分的重點。那今天中公教育就帶大家一起探索一下如何解決合作完工問題。
首先,要了解工程問題中的一些基礎知識。第一,基礎公式為:工作總量=工作效率×工作時間,用字母表示就是W=P×T。第二。合作完工的核心是:合作的效率等于分效率之和,即
其次,我們一起探索合作完工常考的題型、特征以及解題方法。常考題型是兩類:
一、已知多個完工時間,設工作總量為時間的最小公倍數。
什么是“多個完工時間”呢?首先,“多個”的意思是,兩個或兩個以上;其次,“完工時間”的意思有兩個層面,一層是工程必須完成,另一層是,在這個過程中不可換人,必須保持一個效率干完。比如下面這個例題。
例1
某項工程,甲、乙、丙三人分別用10天、15天、12天可獨自完成。現三人合作,在工作過程中,乙休息了5天,丙休息了2天,而甲一直堅持到工程結束,則最后他們完成這項工程一共所需要的天數是:
A.6 B.9 C.7 D.8
在這道例題中,有“10天、15天、12天”三個完成工作的時間,且在工作中未出現中途換人的情況,我們稱之為“多個完工時間”。
答案:A。中公解析:設工作總量為10、15、12的最小公倍數60,則有,甲的效率為60÷10=6,乙的效率為60÷15=4,丙的效率為60÷12=5,設這項工程一共所需的時間為T,則有:6×T+4×(T-5)+5×(T-2)=60。解得,T=6天,選擇A。
二、已知或可以表示出工作效率,將最簡比設為效率值。
如果題目中沒有出現多個完工時間,我們就可以考慮是否能夠從題干信息中提取出效率比例關系,直接將最簡比設為效率值。可以提取效率比例關系的句式主要有以下幾種:
第一,“甲、乙、丙的效率比為3:4:5”,可以直接得到效率比例關系;
第二,“甲工作2天的工作量相當于乙3天的工作量”,可得
第三,“一項工作,甲單獨工作8天后,由乙繼續工作5天可以完成,或者甲乙合作3天后,乙單獨工作6天可以完成”,由此信息可得,
例2甲乙兩人共同完成一項翻譯工作,原計劃15天完成,但期間由于甲生病休息了一段時間,結果兩人從開始到完成任務共花了20天。已知甲三天的翻譯量和乙五天的翻譯量相當,則甲休息了幾天?
A.3 B.5 C.8 D.10
本題中只有一個完工時間15天。所以考慮找效率比例關系。
答案C。中公解析:題目中“甲三天的翻譯量和乙五天的翻譯量相當”可以得出甲乙的效率比為5:3。所以設甲的效率為5,乙的效率為3,根據題意,工作總量為15×(5+3)=120。設甲休息了X天,則有,5×(20-X)+3×20=120,解得X=8。選擇C選項。
![]() |
![]() |
更多安置政策詳見軍題庫助手 | 2021各省軍轉安置交流群 |
》關注軍轉安置考試微信(junzhuanjz)訂閱號,回復:領資料,領取2021時政熱點備考資料《
備考平臺
公告預約點擊預約,考試考情早知道
省份 | 時間 | 活動詳情 | 查看課程 |
---|